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Abstract. Evaporation residue cross sections for 132Sn, 134Te and 124Sn with 64Ni were measured. A
compact system to measure these cross sections to values as low as 1 mb is described and a sample of data
acquired with this system is shown.

PACS. 25.60.-t Reactions induced by unstable nuclei – 25.60.Pj Fusion reactions – 25.70.-z Low and
intermediate energy heavy-ion reactions – 25.70.Jj Fusion and fusion-fission reactions

A diagram of the experimental setup used to study the
evaporation residues from collisions of accelerated fission
products from uranium produced at HRIBF [1] with a sec-
ondary 64Ni target, is shown in fig. 1. The setup depicted
allows beam rates of up to 105 counts/s (limited by the
gas-filled ionization chamber). The efficiency for detecting
evaporation residues is very high, especially under condi-
tions where inverse kinematics are employed. The fast tim-
ing detectors allow us to apply a fast pre-trigger that se-
lects events associated with particles slower than the beam
(e.g. evaporation residues). These timing detectors also al-
low for continuous monitoring of beam intensity and the
beam profile is monitored using the position signals from
the third timing detector. Counting of incident beam par-
ticles and continuous monitoring of the beam position can
yield accurate cross section data. A full description of this
setup will appear in a forthcoming publication [2].
Figure 2 displays rescaled cross sections for 132Sn and

124Sn on 64Ni. Part of the 132Sn data shown here were
measured in a separate experiment [3] with the same
setup. The 124Sn data were taken in a separate stable
beam run, for comparison with data from ref. [4] as well
as to extend these measurements to lower bombarding
energy. Figure 3 contains similar data comparing evap-
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oration residue cross sections for 134Te + 64Ni (A = 134
beam purity ≥ 95%) and for 124Sn + 64Ni. All cross sec-
tion shown are plotted in a manner that removes any ex-
pected difference in cross section that are due to trivial
variation in nuclear sizes and barrier heights (rescaled).
The barrier height, Vb, used in these figures is the cal-
culated barrier height of the combined nuclear [5] poten-
tial and the Coulomb potential of two charged spheres.
The interaction radius, R, used in these figures is the
radius corresponding to the top of the calculated inter-
action barrier (Vb). The data in fig. 2 provide evidence
for a large enhancement in the evaporation residue cross
section of 132Sn compared to the less neutron-rich 124Sn
case at energies below the Coulomb barrier. Note that
for all the systems shown here fissilities are almost iden-
tical, and that fission competition is predicted by statis-
tical model calculations to be very small at sub-barrier
energies. Coupled-channel calculations which include cou-
pling to inelastic excitation of target and projectile, two-
phonon excitation, mutual excitation and transfer of up
to three neutrons describe, successfully, the 124Sn + 64Ni
fusion cross sections [6] but could not reproduce the en-
hancement observed in the 132Sn + 64Ni system [7]. The
134Te data in fig. 3 show a very different behavior. No
enhancement of sub-barrier evaporation residue cross sec-
tions in 134Te + 64Ni is observed beyond what is seen
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Fig. 1. A block diagram showing the main elements of our detection system. The black (blue on-line) boxes present the different
signals (parameters) that are recorded every time a valid event occurred. A valid event could be either a particle slower than
the beam or a down scaled sample of the beam.

0.90 0.95 1.00 1.05 1.10 1.15
Ecm / Vb

10−3

10−2

10−1

100

σ
/π

R
2

124Sn+64Ni Freeman et al.
124Sn+64Ni new data
132Sn+64Ni Liang et al.
132Sn+64Ni new data

Fig. 2. Rescaled evaporation residue cross sections. The data
set labeled Freeman et al. is from [4]. All other data were taken
with this system.

in 124Sn + 64Ni. One could only speculate at this point
whether the paucity of neutron transfer channels with pos-
itive Q-value is at play, or maybe fission is more important
in 134Te + 64Ni after all.
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Fig. 3. Rescaled evaporation residue cross sections. The 124Sn
data are the same as in fig. 2.
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